top of page

Original Ethereum Whitepaper


Ethereum White Paper

Below is the original Ethereum White Paper written by Vitalik Buterin:

Ethereum White Paper

A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM

By Vitalik Buterin

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was simultaneously introducing two radical and untested concepts. The first is the "bitcoin", a decentralized peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So far, the "bitcoin" as a currency unit has taken up the bulk of the public attention, both in terms of the political aspects of a currency without a central bank and its extreme upward and downward volatility in price. However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining from two transactions which came earlier, and for decades this stymied the development of decentralized digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be used for more than just money.

Commonly cited applications include using on-blockchain digital assets to represent custom currencies and financial instruments ("colored coins"), the ownership of an underlying physical device ("smart property"), non-fungible assets such as domain names ("Namecoin") as well as more advanced applications such as decentralized exchange, financial derivatives, peer-to-peer gambling and on-blockchain identity and reputation systems. Another important area of inquiry is "smart contracts" - systems which automatically move digital assets according to arbitrary pre-specified rules. For example, one might have a treasury contract of the form "A can withdraw up to X currency units per day, B can withdraw up to Y per day, A and B together can withdraw anything, and A can shut off B's ability to withdraw". The logical extension of this is decentralized autonomous organizations (DAOs) - long-term smart contracts that contain the assets and encode the bylaws of an entire organization. What Ethereum intends to provide is a blockchain with a built-in fully fledged Turing-complete programming language that can be used to create "contracts" that can be used to encode arbitrary state transition functions, allowing users to create any of the systems described above, as well as many others that we have not yet imagined, simply by writing up the logic in a few lines of code.

Table of contents

  • History

  1. Bitcoin As A State Transition System

○ Mining

○ Merkle Trees

○ Alternative Blockchain Applications

○ Scripting

  • Ethereum

  1. Ethereum Accounts

○ Messages and Transactions

○ Ethereum State Transition Function

○ Code Execution

○ Blockchain and Mining

  • Applications

  1. Token Systems

○ Financial derivatives

○ Identity and Reputation Systems

○ Decentralized File Storage

○ Decentralized Autonomous Organizations

○ Further Applications ● Miscellanea And Concerns

○ Modified GHOST Implementation

○ Fees

○ Computation And Turing-Completeness

○ Currency And Issuance

○ Mining Centralization

○ Scalability

  • Putting It All Together: Decentralized Applications

  • Conclusion

  • References and Further Reading

History

The concept of decentralized digital currency, as well as alternative applications like property registries, has been around for decades. The anonymous e-cash protocols of the 1980s and the 1990s, mostly reliant on a cryptographic primitive known as Chaumian blinding, provided a currency with a high degree of privacy, but the protocols largely failed to gain traction because of their reliance on a centralized intermediary. In 1998, Wei Dai's b-money became the first proposal to introduce the idea of creating money through solving computational puzzles as well as decentralized consensus, but the proposal was scant on details as to how decentralized consensus could actually be implemented. In 2005, Hal Finney introduced a concept of "reusable proofs of work", a system which uses ideas from b-money together with Adam Back's computationally difficult Hashcash puzzles to create a concept for a cryptocurrency, but once again fell short of the ideal by relying on trusted computing as a backend.

Because currency is a first-to-file application, where the order of transactions is often of critical importance, decentralized currencies require a solution to decentralized consensus. The main roadblock that all pre-Bitcoin currency protocols faced is the fact that, while there had been plenty of research on creating secure Byzantine-fault-tolerant multiparty consensus systems for many years, all of the protocols described were solving only half of the problem. The protocols assumed that all participants in the system were known, and produced security margins of the form "if N parties participate, then the system can tolerate up to N/4 malicious actors". The problem is, however, that in an anonymous setting such security margins are vulnerable to sybil attacks, where a single attacker creates thousands of simulated nodes on a server or botnet and uses these nodes to unilaterally secure a majority share.

The innovation provided by Satoshi is the idea of combining a very simple decentralized consensus protocol, based on nodes combining transactions into a "block" every ten minutes creating an ever-growing blockchain, with proof of work as a mechanism through which nodes gain the right to participate in the system. While nodes with a large amount of computational power do have proportionately greater influence, coming up with more computational power than the entire network combined is much harder than simulating a million nodes. Despite the Bitcoin blockchain model's crudeness and simplicity, it has proven to be good enough, and would over the next five years become the bedrock of over two hundred currencies and protocols around the world.

Bitcoin As A State Transition System

From a technical standpoint, the Bitcoin ledger can be thought of as a state transition system, where there is a "state" consisting of the ownership status of all existing bitcoins and a "state transition function" that takes a state and a transaction and outputs a new state which is the result. In a standard banking system, for example, the state is a balance sheet, a transaction is a request to move $X from A to B, and the state transition function reduces the value in A's account by $X and increases the value in B's account by $X. If A's account has less than $X in the first place, the state transition function returns an error. Hence, one can formally define:

APPLY(S,TX) ­> S' or ERROR

In the banking system defined above:

APPLY({ Alice: $50, Bob: $50 },"send $20 from Alice to Bob") = { Alice: $30, Bob: $70 }

But:

APPLY({ Alice: $50, Bob: $50 },"send $70 from Alice to Bob") = ERROR

The "state" in Bitcoin is the collection of all coins (technically, "unspent transaction outputs" or UTXO) that have been minted and not yet spent, with each UTXO having a denomination and an owner (defined by a 20-byte address which is essentially a cryptographic public key[1]). A transaction contains one or more inputs, with each input containing a reference to an existing UTXO and a cryptographic signature produced by the private key associated with the owner's address, and one or more outputs, with each output containing a new UTXO to be added to the state.

1. For each input in TX:

  1. If the referenced UTXO is not in S, return an error.

  2. If the provided signature does not match the owner of the UTXO, return an error.

  3. If the sum of the denominations of all input UTXO is less than the sum of the denominations of all output UTXO, return an error.

  4. Return S with all input UTXO removed and all output UTXO added.

The first half of the first step prevents transaction senders from spending coins that do not exist, the second half of the first step prevents transaction senders from spending other people's coins, and the second step enforces conservation of value. In order to use this for payment, the protocol is as follows. Suppose Alice wants to send 11.7 BTC to Bob. First, Alice will look for a set of available UTXO that she owns that totals up to at least 11.7 BTC. Realistically, Alice will not be able to get exactly 11.7 BTC; say that the smallest she can get is

6+4+2=12. She then creates a transaction with those three inputs and two outputs. The first output will be 11.7 BTC with Bob's address as its owner, and the second output will be the remaining 0.3 BTC "change", with the owner being Alice herself.

Mining

If we had access to a trustworthy centralized service, this system would be trivial to implement; it could simply be coded exactly as described. However, with Bitcoin we are trying to build a decentralized currency system, so we will need to combine the state transition system with a consensus system in order to ensure that everyone agrees on the order of transactions. Bitcoin's decentralized consensus process requires nodes in the network to continuously attempt to produce packages of transactions called "blocks". The network is intended to produce roughly one block every ten minutes, with each block containing a timestamp, a nonce, a reference to (ie. hash of) the previous block and a list of all of the transactions that have taken place since the previous block. Over time, this creates a persistent, ever-growing, "blockchain" that constantly updates to represent the latest state of the Bitcoin ledger.

The algorithm for checking if a block is valid, expressed in this paradigm, is as follows:

  1. Check if the previous block referenced by the block exists and is valid

  2. Check that the timestamp of the block is greater than that of the previous block[2] and less than 2 hours into the future.

  3. Check that the proof of work on the block is valid.

  4. Let S[0] be the state at the end of the previous block.

  5. Suppose TX is the block's transaction list with n transactions. For all i in 0...n-1, setS[i+1] = APPLY(S[i],TX[i]) If any application returns an error, exit and return false.

  6. Return true, and register S[n] as the state at the end of this block

Essentially, each transaction in the block must provide a state transition that is valid. Note that the state is not encoded in the block in any way; it is purely an abstraction to be remembered by the validating node and can only be (securely) computed for any block by starting from the genesis state and sequentially applying every transaction in every block. Additionally, note that the order in which the miner includes transactions into the block matters; if there are two transactions A and B in a block such that B spends a UTXO created by A, then the block will be valid if A comes before B but not otherwise.

The interesting part of the block validation algorithm is the concept of "proof of work": the condition is that the SHA256 hash of every block, treated as a 256-bit number, must be less than a dynamically adjusted target, which as of the time of this writing is approximately 2190. The purpose of this is to make block creation computationally "hard", thereby preventing sybil attackers from remaking the entire blockchain in their favor. Because SHA256 is designed to be a completely unpredictable pseudorandom function, the only way to create a valid block is simply trial and error, repeatedly incrementing the nonce and seeing if the new hash matches. At the current target of 2192, this means an average of 264 tries; in general, the target is recalibrated by the network every 2016 blocks so that on average a new block is produced by some node in the network every ten minutes. In order to compensate miners for this computational work, the miner of every block is entitled to include a transaction giving themselves 25 BTC out of nowhere. Additionally, if any transaction has a higher total denomination in its inputs than in its outputs, the difference also goes to the miner as a "transaction fee". Incidentally, this is also the only mechanism by which BTC are issued; the genesis state contained no coins at all.

In order to better understand the purpose of mining, let us examine what happens in the event of a malicious attacker. Since Bitcoin's underlying cryptography is known to be secure, the attacker will target the one part of the Bitcoin system that is not protected by cryptography directly: the order of transactions. The attacker's strategy is simple:

  1. Send 100 BTC to a merchant in exchange for some product (preferably a rapid-delivery digital good)

  2. Wait for the delivery of the product

  3. Produce another transaction sending the same 100 BTC to himself

  4. Try to convince the network that his transaction to himself was the one that came first.

Once step (1) has taken place, after a few minutes some miner will include the transaction in a block, say block number 270000. After about one hour, five more blocks will have been added to the chain after that block, with each of those blocks indirectly pointing to the transaction and thus "confirming" it. At this point, the merchant will accept the payment as finalized and deliver the product; since we are assuming this is a digital good, delivery is instant. Now, the attacker creates another transaction sending the 100 BTC to himself. If the attacker simply releases it into the wild, the transaction will not be processed; miners will attempt to run APPLY(S,TX) and notice that TX consumes a UTXO which is no longer in the state. So instead, the attacker creates a "fork" of the blockchain, starting by mining another version of block 270000 pointing to the same block 269999 as a parent but with the new transaction in place of the old one. Because the block data is different, this requires redoing the proof of work. Furthermore, the attacker's new version of block 270000 has a different hash, so the original blocks 270001 to 270005 do not "point" to it; thus, the original chain and the attacker's new chain are completely separate. The rule is that in a fork the longest blockchain (ie. the one backed by the largest quantity of proof of work) is taken to be the truth, and so legitimate miners will work on the 270005 chain while the attacker alone is working on the 270000 chain. In order for the attacker to make his blockchain the longest, he would need to have more computational power than the rest of the network combined in order to catch up (hence, "51% attack").

Merkle Trees

Left: it suffices to present only a small number of nodes in a Merkle tree to give a proof of the validity of a branch.

Right: any attempt to change any part of the Merkle tree will eventually lead to an inconsistency somewhere up the chain.

An important scalability feature of Bitcoin is that the block is stored in a multi-level data structure. The "hash" of a block is actually only the hash of the block header, a roughly 200-byte piece of data that contains the timestamp, nonce, previous block hash and the root hash of a data structure called the Merkle tree storing all transactions in the block.

A Merkle tree is a type of binary tree, composed of a set of nodes with a large number of leaf nodes at the bottom of the tree containing the underlying data, a set of intermediate nodes where each node is the hash of its two children, and finally a single root node, also formed from the hash of its two children, representing the "top" of the tree. The purpose of the Merkle tree is to allow the data in a block to be delivered piecemeal: a node can download only the header of a block from one source, the small part of the tree relevant to them from another source, and still be assured that all of the data is correct. The reason why this works is that hashes propagate upward: if a malicious user attempts to swap in a fake transaction into the bottom of a Merkle tree, this change will cause a change in the node above, and then a change in the node above that, finally changing the root of the tree and therefore the hash of the block, causing the protocol to register it as a completely different block (almost certainly with an invalid proof of work).

The Merkle tree protocol is arguably essential to long-term sustainability. A "full node" in the Bitcoin network, one that stores and processes the entirety of every block, takes up about 15 GB of disk space in the Bitcoin network as of April 2014, and is growing by over a gigabyte per month. Currently, this is viable for some desktop computers and not phones, and later on in the future only businesses and hobbyists will be able to participate. A protocol known as "simplified payment verification" (SPV) allows for another class of nodes to exist, called "light nodes", which download the block headers, verify the proof of work on the block headers, and then download only the "branches" associated with transactions that are relevant to them. This allows light nodes to determine with a strong guarantee of security what the status of any Bitcoin transaction, and their current balance, is while downloading only a very small portion of the entire blockchain.

Alternative Blockchain Applications

The idea of taking the underlying blockchain idea and applying it to other concepts also has a long history. In 2005, Nick Szabo came out with the concept of "secure property titles with owner authority", a document describing how "new advances in replicated database technology" will allow for a blockchain-based system for storing a registry of who owns what land, creating an elaborate framework including concepts such as homesteading, adverse possession and Georgian land tax. However, there was unfortunately no effective replicated database system available at the time, and so the protocol was never implemented in practice. After 2009, however, once Bitcoin's decentralized consensus was developed a number of alternative applications rapidly began to emerge:

  • Namecoin - created in 2010, Namecoin is best described as a decentralized name registration database. In decentralized protocols like Tor, Bitcoin and BitMessage, there needs to be some way of identifying accounts so that other people can interact with them, but in all existing solutions the

only kind of identifier available is a pseudorandom hash

like1LW79wp5ZBqaHW1jL5TCiBCrhQYtHagUWy. Ideally, one would like to be able to have an account with a name like "george". However, the problem is that if one person can create an account named "george" then someone else can use the same process to register "george" for themselves as well and impersonate them. The only solution is a first-to-file paradigm, where the first registrant succeeds and the second fails - a problem perfectly suited for the Bitcoin consensus protocol. Namecoin is the oldest, and most successful, implementation of a name registration system using such an idea.

  • Colored coins - the purpose of colored coins is to serve as a protocol to allow people to create their own digital currencies - or, in the important trivial case of a currency with one unit, digital tokens,

on the Bitcoin blockchain. In the colored coins protocol, one "issues" a new currency by publicly assigning a color to a specific Bitcoin UTXO, and the protocol recursively defines the color of other UTXO to be the same as the color of the inputs that the transaction creating them spent (some special rules apply in the case of mixed-color inputs). This allows users to maintain wallets containing only UTXO of a specific color and send them around much like regular bitcoins, backtracking through the blockchain to determine the color of any UTXO that they receive.

  • Metacoins - the idea behind a metacoin is to have a protocol that lives on top of Bitcoin, using

Bitcoin transactions to store metacoin transactions but having a different state transition function, APPLY'. Because the metacoin protocol cannot prevent invalid metacoin transactions from appearing in the Bitcoin blockchain, a rule is added that if APPLY'(S,TX) returns an error, the protocol defaults to APPLY'(S,TX) = S. This provides an easy mechanism for creating an arbitrary cryptocurrency protocol, potentially with advanced features that cannot be implemented inside of Bitcoin itself, but with a very low development cost since the complexities of mining and networking are already handled by the Bitcoin protocol.

Thus, in general, there are two approaches toward building a consensus protocol: building an independent network, and building a protocol on top of Bitcoin. The former approach, while reasonably successful in the case of applications like Namecoin, is difficult to implement; each individual implementation needs to bootstrap an independent blockchain, as well as building and testing all of the necessary state transition and networking code. Additionally, we predict that the set of applications for decentralized consensus technology will follow a power law distribution where the vast majority of applications would be too small to warrant their own blockchain, and we note that there exist large classes of decentralized applications, particularly decentralized autonomous organizations, that need to interact with each other.

The Bitcoin-based approach, on the other hand, has the flaw that it does not inherit the simplified payment verification features of Bitcoin. SPV works for Bitcoin because it can use blockchain depth as a proxy for validity; at some point, once the ancestors of a transaction go far enough back, it is safe to say that they were legitimately part of the state. Blockchain-based meta-protocols, on the other hand, cannot force the blockchain not to include transactions that are not valid within the context of their own protocols. Hence, a fully secure SPV meta-protocol implementation would need to backward scan all the way to the beginning of the Bitcoin blockchain to determine whether or not certain transactions are valid. Currently, all "light" implementations of Bitcoin-based meta-protocols rely on a trusted server to provide the data, arguably a highly suboptimal result especially when one of the primary purposes of a cryptocurrency is to eliminate the need for trust.

Scripting

Even without any extensions, the Bitcoin protocol actually does facilitate a weak version of a concept of "smart contracts". UTXO in Bitcoin can be owned not just by a public key, but also by a more complicated script expressed in a simple stack-based programming language. In this paradigm, a transaction spending that UTXO must provide data that satisfies the script. Indeed, even the basic public key ownership mechanism is implemented via a script: the script takes an elliptic curve signature as input, verifies it against the transaction and the address that owns the UTXO, and returns 1 if the verification is successful and 0 otherwise. Other, more complicated, scripts exist for various additional use cases. For example, one can construct a script that requires signatures from two out of a given three private keys to validate ("multisig"), a setup useful for corporate accounts, secure savings accounts and some merchant escrow situations. Scripts can also be used to pay bounties for solutions to computational problems, and one can even construct a script that says something like "this Bitcoin UTXO is yours if you can provide an SPV proof that you sent a Dogecoin transaction of this denomination to me", essentially allowing decentralized cross-cryptocurrency exchange.

However, the scripting language as implemented in Bitcoin has several important limitations:

  • Lack of Turing-completeness - that is to say, while there is a large subset of computation that the Bitcoin scripting language supports, it does not nearly support everything. The main category that is missing is loops. This is done to avoid infinite loops during transaction verification; theoretically it is a surmountable obstacle for script programmers, since any loop can be simulated by simply repeating the underlying code many times with an if statement, but it does lead to scripts that are very space-inefficient. For example, implementing an alternative elliptic curve signature algorithm would likely require 256 repeated multiplication rounds all individually included in the code.

  • Value-blindness - there is no way for a UTXO script to provide fine-grained control over the amount that can be withdrawn. For example, one powerful use case of an oracle contract would be a hedging contract, where A and B put in $1000 worth of BTC and after 30 days the script sends $1000 worth of BTC to A and the rest to B. This would require an oracle to determine the value of 1 BTC in USD, but even then it is a massive improvement in terms of trust and infrastructure requirement over the fully centralized solutions that are available now. However, because UTXO are all-or-nothing, the only way to achieve this is through the very inefficient hack of having many UTXO of varying denominations (eg. one UTXO of 2k for every k up to 30) and having the oracle pick which UTXO to send to A and which to B.

  • Lack of state - UTXO can either be spent or unspent; there is no opportunity for multi-stage contracts or scripts which keep any other internal state beyond that. This makes it hard to make multi-stage options contracts, decentralized exchange offers or two-stage cryptographic commitment protocols (necessary for secure computational bounties). It also means that UTXO can only be used to build simple, one-off contracts and not more complex "stateful" contracts such as decentralized organizations, and makes meta-protocols difficult to implement. Binary state combined with value-blindness also mean that another important application, withdrawal limits, is impossible.

  • Blockchain-blindness - UTXO are blind to blockchain data such as the nonce and previous hash. This severely limits applications in gambling, and several other categories, by depriving the scripting language of a potentially valuable source of randomness.

Thus, we see three approaches to building advanced applications on top of cryptocurrency: building a new blockchain, using scripting on top of Bitcoin, and building a meta-protocol on top of Bitcoin. Building a new blockchain allows for unlimited freedom in building a feature set, but at the cost of development time and bootstrapping effort. Using scripting is easy to implement and standardize, but is very limited in its capabilities, and meta-protocols, while easy, suffer from faults in scalability. With Ethereum, we intend to build a generalized framework that can provide the advantages of all three paradigms at the same time.

Ethereum

The intent of Ethereum is to merge together and improve upon the concepts of scripting, altcoins and on-chain meta-protocols, and allow developers to create arbitrary consensus-based applications that have the scalability, standardization, feature-completeness, ease of development and interoperability offered by these different paradigms all at the same time. Ethereum does this by building what is essentially the ultimate abstract foundational layer: a blockchain with a built-in Turing-complete programming language, allowing anyone to write smart contracts and decentralized applications where they can create their own arbitrary rules for ownership, transaction formats and state transition functions. A bare-bones version of Namecoin can be written in two lines of code, and other protocols like currencies and reputation systems can be built in under twenty. Smart contracts, cryptographic "boxes" that contain value and only unlock it if certain conditions are met, can also be built on top of our platform, with vastly more power than that offered by Bitcoin scripting because of the added powers of Turing-completeness, value-awareness, blockchain-awareness and state.

Ethereum Accounts

In Ethereum, the state is made up of objects called "accounts", with each account having a 20-byte address and state transitions being direct transfers of value and information between accounts. An Ethereum account contains four fields:

  • The nonce, a counter used to make sure each transaction can only be processed once

  • The account's current ether balance

  • The account's contract code, if present

  • The account's storage (empty by default)

"Ether" is the main internal crypto-fuel of Ethereum, and is used to pay transaction fees. In general, there are two types of accounts: externally owned accounts, controlled by private keys, and contract accounts, controlled by their contract code. An externally owned account has no code, and one can send messages from an externally owned account by creating and signing a transaction; in a contract account, every time the contract account receives a message its code activates, allowing it to read and write to internal storage and send other messages or create contracts in turn.

Messages and Transactions

"Messages" in Ethereum are somewhat similar to “transactions” in Bitcoin, but with three important differences. First, an Ethereum message can be created either by an external entity or a contract, whereas a Bitcoin transaction can only be created externally. Second, there is an explicit option for Ethereum messages to contain data. Finally, the recipient of an Ethereum message, if it is a contract account, has the option to return a response; this means that Ethereum messages also encompass the concept of functions.

The term "transaction" is used in Ethereum to refer to the signed data package that stores a message to be sent from an externally owned account. Transactions contain the recipient of the message, a signature identifying the sender, the amount of ether and the data to send, as well as two values called STARTGAS and GASPRICE. In order to prevent exponential blowup and infinite loops in code, each transaction is required to set a limit to how many computational steps of code execution it can spawn, including both the initial message and any additional messages that get spawned during execution. STARTGAS is this limit, and GASPRICE is the fee to pay to the miner per computational step. If transaction execution "runs out of gas", all state changes revert - except for the payment of the fees, and if transaction execution halts with some gas remaining then the remaining portion of the fees is refunded to the sender. There is also a separate transaction type, and corresponding message type, for creating a contract; the address of a contract is calculated based on the hash of the account nonce and transaction data.

An important consequence of the message mechanism is the "first class citizen" property of Ethereum - the idea that contracts have equivalent powers to external accounts, including the ability to send message and create other contracts. This allows contracts to simultaneously serve many different roles: for example, one might have a member of a decentralized organization (a contract) be an escrow account (another contract) between an paranoid individual employing custom quantum-proof Lamport signatures (a third contract) and a co-signing entity which itself uses an account with five keys for security (a fourth contract). The strength of the Ethereum platform is that the decentralized organization and the escrow contract do not need to care about what kind of account each party to the contract is.

Ethereum State Transition Function

  1. Check if the transaction is well-formed (ie. has the right number of values), the signature is valid, and the nonce matches the nonce in the sender's account. If not, return an error.

  2. Calculate the transaction fee as STARTGAS * GASPRICE, and determine the sending address from the signature. Subtract the fee from the sender's account balance and increment the sender's nonce. If there is not enough balance to spend, return an error.

  3. Initialize GAS = STARTGAS, and take off a certain quantity of gas per byte to pay for the bytes in the transaction.

  4. Transfer the transaction value from the sender's account to the receiving account. If the receiving account does not yet exist, create it. If the receiving account is a contract, run the contract's code either to completion or until the execution runs out of gas.

  5. If the value transfer failed because the sender did not have enough money, or the code execution ran out of gas, revert all state changes except the payment of the fees, and add the fees to the miner's account.

  6. Otherwise, refund the fees for all remaining gas to the sender, and send the fees paid for gas consumed to the miner.

For example, suppose that the contract's code is:

if !contract.storage[msg.data[0]]: contract.storage[msg.data[0]] = msg.data[1]

Note that in reality the contract code is written in the low-level EVM code; this example is written in Serpent, our high-level language, for clarity, and can be compiled down to EVM code. Suppose that the contract's storage starts off empty, and a transaction is sent with 10 ether value, 2000 gas, 0.001 ether gasprice, and two data fields: [ 2, 'CHARLIE' ][3]. The process for the state transition function in this case is as follows:

  1. Check that the transaction is valid and well formed.

  2. Check that the transaction sender has at least 2000 * 0.001 = 2 ether. If it is, then subtract 2 ether from the sender's account.

  3. Initialize gas = 2000; assuming the transaction is 170 bytes long and the byte-fee is 5, subtract 850 so that there is 1150 gas left.

  4. Subtract 10 more ether from the sender's account, and add it to the contract's account.

  5. Run the code. In this case, this is simple: it checks if the contract's storage at index 2 is used, notices that it is not, and so it sets the storage at index 2 to the value CHARLIE. Suppose this takes 187 gas, so the remaining amount of gas is 1150 - 187 = 963

  6. Add 963 * 0.001 = 0.963 ether back to the sender's account, and return the resulting state.

If there was no contract at the receiving end of the transaction, then the total transaction fee would simply be equal to the provided GASPRICE multiplied by the length of the transaction in bytes, and the data sent alongside the transaction would be irrelevant. Additionally, note that contract-initiated messages can assign a gas limit to the computation that they spawn, and if the sub-computation runs out of gas it gets reverted only to the point of the message call. Hence, just like transactions, contracts can secure their limited computational resources by setting strict limits on the sub-computations that they spawn.

Code Execution

The code in Ethereum contracts is written in a low-level, stack-based bytecode language, referred to as "Ethereum virtual machine code" or "EVM code". The code consists of a series of bytes, where each byte represents an operation. In general, code execution is an infinite loop that consists of repeatedly carrying out the operation at the current program counter (which begins at zero) and then incrementing the program counter by one, until the end of the code is reached or an error or STOP or RETURN instruction is detected. The operations have access to three types of space in which to store data:

  • The stack, a last-in-first-out container to which 32-byte values can be pushed and popped

  • Memory, an infinitely expandable byte array

  • The contract's long-term storage, a key/value store where keys and values are both 32 bytes. Unlike stack and memory, which reset after computation ends, storage persists for the long term.

The code can also access the value, sender and data of the incoming message, as well as block header data, and the code can also return a byte array of data as an output.

The formal execution model of EVM code is surprisingly simple. While the Ethereum virtual machine is running, its full computational state can be defined by the tuple (block_state, transaction, message, code, memory, stack, pc, gas), where block_state is the global state containing all accounts and includes balances and storage. Every round of execution, the current instruction is found by taking the pc-th byte of code, and each instruction has its own definition in terms of how it affects the tuple. For example, ADD pops two items off the stack and pushes their sum, reduces gas by 1 and increments pc by 1, and SSTORE pushes the top two items off the stack and inserts the second item into the contract's storage at the index specified by the first item, as well as reducing gas by up to 200 and incrementing pc by 1. Although there are many ways to optimize Ethereum via just-in-time compilation, a basic implementation of Ethereum can be done in a few hundred lines of code.

Blockchain and Mining

The Ethereum blockchain is in many ways similar to the Bitcoin blockchain, although it does have some differences. The main difference between Ethereum and Bitcoin with regard to the blockchain architecture is that, unlike Bitcoin, Ethereum blocks contain a copy of both the transaction list and the most recent state. Aside from that, two other values, the block number and the difficulty, are also stored in the block. The block validation algorithm in Ethereum is as follows:

  1. Check if the previous block referenced exists and is valid.

  2. Check that the timestamp of the block is greater than that of the referenced previous block and less than 15 minutes into the future

  3. Check that the block number, difficulty, transaction root, uncle root and gas limit (various low-level Ethereum-specific concepts) are valid.

  4. Check that the proof of work on the block is valid.

  5. Let S[0] be the STATE_ROOT of the previous block.

  6. Let TX be the block's transaction list, with n transactions. For all in in 0...n-1, setS[i+1] = APPLY(S[i],TX[i]). If any applications returns an error, or if the total gas consumed in the block up until this point exceeds the GASLIMIT, return an error.

  7. Let S_FINAL be S[n], but adding the block reward paid to the miner.

  8. Check if S_FINAL is the same as the STATE_ROOT. If it is, the block is valid; otherwise, it is not valid.

The approach may seem highly inefficient at first glance, because it needs to store the entire state with each block, but in reality efficiency should be comparable to that of Bitcoin. The reason is that the state is stored in the tree structure, and after every block only a small part of the tree needs to be changed. Thus, in general, between two adjacent blocks the vast majority of the tree should be the same, and therefore the data can be stored once and referenced twice using pointers (ie. hashes of subtrees). A special kind of tree known as a "Patricia tree" is used to accomplish this, including a modification to the Merkle tree concept that allows for nodes to be inserted and deleted, and not just changed, efficiently. Additionally, because all of the state information is part of the last block, there is no need to store the entire blockchain history - a strategy which, if it could be applied to Bitcoin, can be calculated to provide 5-20x savings in space.

Applications

In general, there are three types of applications on top of Ethereum. The first category is financial applications, providing users with more powerful ways of managing and entering into contracts using their money. This includes sub-currencies, financial derivatives, hedging contracts, savings wallets, wills, and ultimately even some classes of full-scale employment contracts. The second category is semi-financial applications, where money is involved but there is also a heavy non-monetary side to what is being done; a perfect example is self-enforcing bounties for solutions to computational problems. Finally, there are applications such as online voting and decentralized governance that are not financial at all.

Token Systems

On-blockchain token systems have many applications ranging from sub-currencies representing assets such as USD or gold to company stocks, individual tokens representing smart property, secure unforgeable coupons, and even token systems with no ties to conventional value at all, used as point systems for incentivization. Token systems are surprisingly easy to implement in Ethereum. The key point to understand is that all a currency, or token systen, fundamentally is is a database with one operation: subtract X units from A and give X units to B, with the proviso that (i) X had at least X units before the transaction and (2) the transaction is approved by A. All that it takes to implement a token system is to implement this logic into a contract.

The basic code for implementing a token system in Serpent looks as follows:

from = msg.sender to = msg.data[0] value = msg.data[1]

if contract.storage[from] >= value:

contract.storage[from] = contract.storage[from] ­ value

contract.storage[to] = contract.storage[to] + value

This is essentially a literal implementation of the "banking system" state transition function described further above in this document. A few extra lines of code need to be added to provide for the initial step of distributing the currency units in the first place and a few other edge cases, and ideally a function would be added to let other contracts query for the balance of an address. But that's all there is to it. Theoretically, Ethereum-based token systems acting as sub-currencies can potentially include another important feature that on-chain Bitcoin-based meta-currencies lack: the ability to pay transaction fees directly in that currency. The way this would be implemented is that the contract would maintain an ether balance with which it would refund ether used to pay fees to the sender, and it would refill this balance by collecting the internal currency units that it takes in fees and reselling them in a constant running auction. Users would thus need to "activate" their accounts with ether, but once the ether is there it would be reusable because the contract would refund it each time.

Financial derivatives and Stable-Value Currencies

Financial derivatives are the most common application of a "smart contract", and one of the simplest to implement in code. The main challenge in implementing financial contracts is that the majority of them require reference to an external price ticker; for example, a very desirable application is a smart contract that hedges against the volatility of ether (or another cryptocurrency) with respect to the US dollar, but doing this requires the contract to know what the value of ETH/USD is. The simplest way to do this is through a "data feed" contract maintained by a specific party (eg. NASDAQ) designed so that that party has the ability to update the contract as needed, and providing an interface that allows other contracts to send a message to that contract and get back a response that provides the price.

Given that critical ingredient, the hedging contract would look as follows:

  1. Wait for party A to input 1000 ether.

  2. Wait for party B to input 1000 ether.

  3. Record the USD value of 1000 ether, calculated by querying the data feed contract, in storage, say this is $x.

  4. After 30 days, allow A or B to "ping" the contract in order to send $x worth of ether (calculated by querying the data feed contract again to get the new price) to A and the rest to B.

Such a contract would have significant potential in crypto-commerce. One of the main problems cited about cryptocurrency is the fact that it's volatile; although many users and merchants may want the security and convenience of dealing with cryptographic assets, they many not wish to face that prospect of losing 23% of the value of their funds in a single day. Up until now, the most commonly proposed solution has been issuer-backed assets; the idea is that an issuer creates a sub-currency in which they have the right to issue and revoke units, and provide one unit of the currency to anyone who provides them (offline) with one unit of a specified underlying asset (eg. gold, USD). The issuer then promises to provide one unit of the underlying asset t